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Abstract
Background The value of postoperative radiotherapy (PORT) for patients with non-small cell lung cancer (NSCLC) 
remains controversial. A subset of patients may benefit from PORT. We aimed to identify patients with NSCLC who 
could benefit from PORT.

Methods Patients from cohorts 1 and 2 with pathological Tany N2 M0 NSCLC were included, as well as patients with 
non-metastatic NSCLC from cohorts 3 to 6. The radiomic prognostic index (RPI) was developed using radiomic texture 
features extracted from the primary lung nodule in preoperative chest CT scans in cohort 1 and validated in other 
cohorts. We employed a least absolute shrinkage and selection operator-Cox regularisation model for data dimension 
reduction, feature selection, and the construction of the RPI. We created a lymph-radiomic prognostic index (LRPI) by 
combining RPI and positive lymph node number (PLN). We compared the outcomes of patients who received PORT 
against those who did not in the subgroups determined by the LRPI.

Results In total, 228, 1003, 144, 422, 19, and 21 patients were eligible in cohorts 1–6. RPI predicted overall survival 
(OS) in all six cohorts: cohort 1 (HR = 2.31, 95% CI: 1.18–4.52), cohort 2 (HR = 1.64, 95% CI: 1.26–2.14), cohort 3 
(HR = 2.53, 95% CI: 1.45–4.3), cohort 4 (HR = 1.24, 95% CI: 1.01–1.52), cohort 5 (HR = 2.56, 95% CI: 0.73–9.02), cohort 6 
(HR = 2.30, 95% CI: 0.53–10.03). LRPI predicted OS (C-index: 0.68, 95% CI: 0.60–0.75) better than the pT stage (C-index: 
0.57, 95% CI: 0.50–0.63), pT + PLN (C-index: 0.58, 95% CI: 0.46–0.70), and RPI (C-index: 0.65, 95% CI: 0.54–0.75). The LRPI 
was used to categorize individuals into three risk groups; patients in the moderate-risk group benefited from PORT 
(HR = 0.60, 95% CI: 0.40–0.91; p = 0.02), while patients in the low-risk and high-risk groups did not.

Conclusions We developed preoperative CT-based radiomic and lymph-radiomic prognostic indexes capable of 
predicting OS and the benefits of PORT for patients with NSCLC.
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Introduction
The value of postoperative radiotherapy (PORT) for 
patients with pN2 non-small cell lung cancer (NSCLC) 
remains controversial [1–4]. Previous retrospective stud-
ies demonstrated that PORT was advantageous [5, 6]. In 
contrast, two recent randomised clinical trials (RCTs) [7, 
8] only showed non-significant improvement of disease-
free survival (DFS) or overall survival (OS) from PORT 
for these unselected patients; however, PORT could sig-
nificantly decrease locoregional recurrence. Additionally, 
the toxicities of PORT [9] — cardiopulmonary toxicity in 
particular [7, 10–12] — may diminish its benefit. Owing 
to these findings, we aimed to predict the prognosis of 
these patients and identify the individuals who could 
benefit from PORT. Few studies have identified suitable 
markers that are valuable for identifying such individuals.

Previous studies have shown that PORT can improve 
the OS of highly selected patients with NSCLC [13, 14]. 
However, the study was only based on clinical features, 
and the results were not validated externally. Computed 
tomography (CT)-based radiomics consists of quantita-
tive imaging characteristics derived from radiographic 
images and has recently attracted interest as a potential 
tool for diagnosis and prognosis prediction in lung can-
cer [15]. To our knowledge, no study has attempted to 
use radiomics to identify patients with NSCLC who may 
benefit from PORT. By accurately determining which 
patients need PORT, their survival could be significantly 
prolonged. Simultaneously, identifying patients who do 
not require PORT allows them to avoid unnecessary side 
effects and reduce medical costs.

This study aimed to develop and validate a quantitative 
radiomic prognostic index (RPI) using radiomic features 
from preoperative CT scans to predict OS in patients 
with NSCLC in six independent cohorts. Additionally, 
we developed a lymph-radiomic prognostic index (LRPI) 
that combined RPI and positive lymph node (PLN) 
amount to identify patients who would benefit from 
PORT.

Methods and materials
Patients
Six independent cohorts were included in this study. 
Cohort 1 included participants from the PORT-C RCT 
(NCT00880971) conducted at China’s National Cancer 
Center between January 1st, 2009 and December 31st, 
2017. Cohort 2 included eligible real-world patients at 
China’s National Cancer Center between 1 June 2010 and 
1 June 2019. The inclusion criteria were patients with his-
tologically proven pN2 NSCLC who underwent complete 
resection. Patients who underwent pneumonectomy 
and those with a history of additional malignancies or 
any neoadjuvant treatment were excluded. Patients with 
available preoperative diagnostic CT scans and survival 

and recurrence data were enrolled. Patients who died or 
experienced recurrence within six months after surgery 
were excluded to minimise immortal time bias because 
the four cycles of chemotherapy and PORT took about 
six months. Patients were divided into the PORT group 
and the non-PORT group. Non-PORT group in cohort 1 
was used to establish the RPI and LRPI. Real-world vali-
dation was performed in cohort 2.

Cohorts 3–6 served as external validation sets. Cohort 
3 comprised patients with early-stage NSCLC who 
underwent surgical treatment between 7 April 2008 and 
15 September 2012 at the Stanford University School 
of Medicine and Palo Alto Veterans Affairs Healthcare 
System, USA [16]. Cohort 4 enrolled patients treated 
at MAASTRO Clinic, The Netherlands, with inoper-
able, histologic or cytologic confirmed NSCLC, Union 
for International Cancer Control (UICC) stages I-IIIb, 
treated with radical radiotherapy alone (n = 196) or with 
chemo-radiation (n = 226) [17]. Cohorts 5 and 6 enrolled 
patients from The Cancer Genome Atlas Lung Adeno-
carcinoma (TCGA-LUAD) [18] and Lung Squamous Cell 
Carcinoma (TCGA-LUSC) data collection [19].

Procedures
Pyradiomics (v3.0.1) was used to extract radiomic fea-
tures from chest CT images. Previous studies have shown 
that the convolution kernel significantly affects feature 
extraction [20]; thus, for cohort 1 and 2, we limited the 
convolution kernel to include STANDARD, B31s, and 
FC14. For Cohorts 3 through 6, we intentionally did 
not restrict the CT acquisition parameter to evaluate 
the robustness of the model across varied imaging set-
tings. We used a uniform slice thickness of 5 mm for all 
cohorts. Each primary tumour was manually contoured 
in the axial view by two experienced radiation oncologists 
using MIM software (MIM, 7.1.4). From each annotated 
area, 1,409 radiomic features from seven distinct fea-
ture families (shape, first-order, grey-level co-occurrence 
matrix, grey-level dependence matrix, grey-level size 
zone matrix, grey-level run-length matrix, and neigh-
bouring grey-tone difference matrix) were retrieved. All 
features were normalised with max-minimum normalisa-
tion in each cohort. The most predictive features for the 
non-PORT group in cohort 1 were used to develop the 
RPI. The formula for calculating the RPI can be found in 
the supplementary materials. An elevated RPI indicates 
an increased mortality risk.

Transcriptomic analysis and pathological evaluation
We calculated the tumour stromal ratio (TSR) with 
QuPath [21] from the surgically resected whole-slide tis-
sue scans of 206 patients in cohort 2 to determine the 
histomorphometry correlation with the RPI. We exam-
ined the relationship between radiomic features and 
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TSR. Detailed methods to calculate TSR are available in 
the supplements. To understand the biological mecha-
nism of RPI, raw and processed RNA sequencing data 
were collected for 130 subjects in cohort 3, available on 
the NCBI Gene Expression Omnibus (GEO) [21]. 117 
patients with corresponding CT scans and segmentations 
were selected for transcriptomic analysis. We employed 
GEO2R for the differential gene expression analysis and 
displayed the result as a volcano plot. Subsequently, we 
implemented Gene Set Enrichment Analysis (GSEA) 
over the Reactome database using the ReactomePA R 
package (v1.44.0), and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) GSEA using the clusterProfiler R 
package (v4.8.1) to identify pertinent biological pathways.

Statistics
Continuous variables are presented as mean ± stan-
dard deviation for normally distributed data and 
median ± interquartile range (IQR) for non-normally 
distributed data. Normality was checked using the Sha-
piro-Wilk test. Categorical variables are presented as 
count and percentage. Continuous variables were com-
pared using one-way ANOVA or Kruskal-Wallis test; 
Categorical variables were compared using χ2 test. This 
study applied the least absolute shrinkage and selection 
operator (LASSO), an appropriate technique for high-
dimensional data, to select the most relevant variables for 
OS among the non-PORT group in cohort 1. A detailed 
explanation and calculation of the selected radiomic fea-
tures can be found in the supplement methods. LASSO 
coefficients were used to create the RPI for each patient 
using a linear combination of the chosen radiomic fea-
tures and their corresponding coefficients as weights. The 
value of the tuning parameter in the LASSO-Cox model 
was averaged across 10 cross-validations to reduce error. 
Significant clinicopathological risk variables were identi-
fied using Cox regression analysis, which were combined 
with the RPI to build an LRPI.

For prognostic stratification, the median RPI val-
ues were used to separate cohort 1 into two groups, for 
which the OSs and hazard ratios (HRs) were determined. 
Kaplan–Meier survival analysis, the log-rank test, and 
HR were used to confirm the predictive performance of 
the RPI. The smoothHR package was utilised to illustrate 
the increase in mortality risk as the RPI escalates. LRPI 
was used to split patients into three risk groups to iden-
tify patients who would benefit from PORT. Version 4.1.0 
of R was used for statistical analyses.

Results
A total of 228 patients were eligible for inclusion in 
cohort 1, of whom 96 (42%) were in the PORT group, 
and 132 (58%) were in the non-PORT group. In cohort 2, 
1,003 eligible patients were identified for real-world vali-
dation; 227 (23%) were in the PORT group, and 776 (77%) 
were in the non-PORT group. A total of 144 patients 
were eligible in cohort 3. The baseline characteristics of 
the patients are presented in Table  1. Baseline informa-
tion of cohort 4–6 was not available. Moreover, cohorts 
4, 5, and 6 consisted of 422, 19, and 21 patients, respec-
tively. Three unique radiomic features (Supplementary 
Fig. 1) were selected using LASSO-Cox analysis to gener-
ate the RPI. The RPI distribution across these six cohorts 
were shown in sFigure 2.

Based on the median RPI of -0·00758, two groups 
with high and low risks were found. RPI predicted 
OS in all cohorts: cohort 1 (HR = 2·31, 95% CI 1·18–
4·52, p = 0·01), cohort 2 (HR = 1·64, 95% CI 1·26–2·14, 
p < 0·01), cohort 3 (HR = 2·53, 95% CI 1·45–4·39, p < 0·01), 

Table 1 Patient characteristics
Characteristic Level Cohort 

1
Cohort 
2

Cohort 3 p

n 228 1003 144
Sex (%) Male 122 

(53.51)
566 
(56.43)

108 (75.00) < 0.01

Female 106 
(46.49)

437 
(43.57)

36 (25.00)

Age (median 
[IQR])

55.00 
[49.00, 
60.00]

59.00 
[52.00, 
65.00]

69.00 
[64.00, 
76.00]

< 0.01

KPS (median 
[IQR])

90.00 
[80.00, 
90.00]

90.00 
[90.00, 
90.00]

Not 
available

< 0.01

Smoking 
history

Absence 129 
(56.58)

530 
(52.84)

22 (15.28) < 0.01

Presence 99 
(43.42)

473 
(47.16)

122 (84.72)

Tumor location Left lung 92 
(40.35)

457 
(45.56)

58 (40.28) 0.22

Right lung 136 
(59.65)

546 
(54.44)

86 (59.72)

Histology non-SCC 198 
(86.84)

824 
(82.32)

115 (79.86) 0.16

SCC 30 
(13.16)

177 
(17.68)

29 (20.14)

pT (%) T1 49 
(21.49)

198 
(19.74)

74 (51.39) < 0.01

T2-3 179 
(78.51)

805 
(80.26)

70 (48.61)

PLN (median 
[IQR])

4.00 
[2.00, 
7.00]

5.00 
[2.00, 
9.00]

Not 
available

< 0.01

PORT (%) NO 132 
(57.89)

776 
(77.37)

132 (91.67) < 0.01

YES 96 
(42.11)

227 
(22.63)

12 (8.33)

Abbreviation KPS, Karnofsky performances status; SCC, squamous cell carcinoma; 
PLN: positive lymph node; IQR, interquartile range; PORT: postoperative 
radiotherapy
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cohort 4 (HR = 1·24, 95% CI 1·01–1·52, p = 0·04), cohort 
5 (HR = 2·56, 95% CI 0·73–9·02, p = 0·14), cohort 6 
(HR = 2·30, 95% CI 0·53–10·03, p = 0·27). Patients with low 
RPIs had enhanced OS, whereas patients with high RPIs 
had reduced OS (Figs. 1, 2 and 3).

Univariate analysis of clinical variables in cohort 1 
revealed that pathologic tumour stage (pT), positive 
lymph node number (PLN) were prognostic factors of OS 
(Supplementary Table 1). However, in the multivariate 
analysis, pT were no longer correlated with OS, whereas 
PLN and RPI remained significant predictors (Supple-
mentary Table 2). Using PLN and the RPI, we created 
an LRPI to predict the 3-year OS, depicted as a nomo-
gram (Fig. 4a). The predicted and observed OS rates were 
comparable, as evidenced by the Hosmer–Lemeshow 

calibration curve (Fig.  4b). The LRPI predicted OS (C 
index 0·68, 95% CI 0·60–0·75) better than the pT (C index 
0·57, 95% CI 0·50–0·63), pT + PLN (C index 0·58, 95% CI 
0·46–0·70), and RPI (C index 0·65, 95% CI 0·54–0·75).

(Fig.  4c). A plateau was observed in the smoothHR 
curve between LRPI values of 1.5 and 2.3 (Fig. 4d) in the 
PORT group of cohort 1. We utilized these two points 
to categorize patients into low, moderate, and high-risk 
groups.

The LRPI was used to categorise individuals to identify 
those who would predict the benefit of PORT. In cohort 
1, patients in the low-risk group (HR = 0·57, 95% CI 0·23–
1·44, p = 0·23, Fig. 5a) and high-risk group (HR = 0·55, 95% 
CI 0·22–1·39, p = 0·21, Fig. 5c) did not benefit from PORT, 
while patients in moderate risk group did (HR = 0·60, 95% 

Fig. 1 Comprehensive outline and pipeline of the study.The initial step encompassed the identification and annotation of the primary nodule evident 
in the CT scan. Pyradiomics was employed to extract intra-tumoural textural features. Using the LASSO-Cox method, top features were selected and ap-
plied in the construction of RPI. The LRPI was constructed utilising prognostic clinical features alongside RPI. The prognostic performance of RPI and the 
predictive potential of LRPI for the benefit of PORT were subsequently validated. Furthermore, the relationships between RPI features and the tumour-
stroma ratio, as seen on whole slide imaging, were evaluated. Correlations between RPI and mRNA data were also explored to investigate the underlying 
biological pathways. LASSO, least absolute shrinkage and selection operator; RPI, radiomic prognostic index; LRPI, lymph-radiomic prognostic index; 
PORT, postoperative radiotherapy
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Fig. 3 Kaplan-Meier curve for overall survival between RPI-based risk groups. The RPI was developed in cohort 1 and validated in cohorts 2–6. RPI, ra-
diomic prognostic index

 

Fig. 2 Study profile
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CI 0·40–0·91, p = 0·02, Fig.  5b). Consistent results were 
found in cohort 2 (Fig. 5d-f ).

We explored the biological basis of the RPI through 
pathological evaluation and transcriptomic analy-
sis. In pathological evaluation, we found that the Gray 
Level Non-Uniformity Normalised (GLNN), one of 
the three selected radiomics features to construct RPI, 
was related to the TSR (Spearman correlation coef-
ficient = 0.227, p < 0.01). Representative pathological 
image tiles from both high and low GLNN groups were 
presented (Fig. 6a). Notably, patients with a high GLNN 
demonstrated a significantly elevated TSR compared to 
those with a low GLNN (p = 0.02, Fig.  6b). Differential 
gene expression analysis between the high- and low-RPI 
groups were shown as volcano plots (sFigure 3a); top 10 
up- and down-regulated genes are shown in sFigure 3b. 
The Reactome pathways associated with RPI involved 
PI3K/AKT, KEAP1/NFE1L2, and antigen presentation 
(Fig. 6c). The KEGG GSEA analysis also highlighted that 
the RPI was related to immune system response, espe-
cially antigen presentation (sFigure 3c).

Discussion
The utility of PORT for patients with NSCLC is dis-
puted [1–4]. While retrospective studies suggest PORT’s 
benefits [5, 6], recent RCTs [7, 8] demonstrated non-
significant improvement in DFS or OS from PORT for 
unselected patients with NSCLC, albeit with a significant 
reduction in locoregional recurrence. Consequently, the 
focus has shifted to identifying high-risk individuals who 
might benefit from PORT. Prior studies revealed that 
PORT could enhance OS in carefully selected patients; 
however, these studies were based solely on clinical fea-
tures and lacked external validation [13, 14]. Radiomics, 
which use quantitative imaging characteristics, has 
emerged as a promising tool for disease diagnosis and 
prognosis [22]. Our study showed that the RPI was a 
promising marker, and LRPI could identify patients who 
would benefit from PORT.

The LRPI is the first radiomics-based index to pre-
dict the benefit from PORT in patients with NSCLC. 
Previous studies have explored the prognostic value of 
radiomic signatures in early-stage NSCLC and the ben-
efits of chemotherapy. One study established a radiomic 
signature by applying a LASSO-Cox regression model 
to 13 radiomic features of 329 patients with stage I or II 

Fig. 4 LRPI for predicting overall survival. a LRPI represented as nomogram. b Calibration curve showcasing the prognostic performance of LRPI. c Con-
cordance index demonstrating the comparison between LRPI and prognostic clinical features. d Calculated logarithm of hazard ratios (solid lines), along 
with the 95% confidence intervals (shaded areas) for the association between LRPI and overall survival. LRPI, lymph-Radiomic prognostic index
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NSCLC to predict DFS and benefit from chemotherapy 
[23]. A comprehensive model combining radiomics and 
major clinicopathological characteristics improved the 
DFS estimate (C-index: 0.74) compared with the clini-
copathological model alone (C-index: 0.71). Another 
study used LASSO-Cox with radiomics to categorise the 
OS risk of pathologic stage IA pure-solid NSCLC in 800 
patients [24]. In both the internal and external validation 
sets, the radiomics signature for predicting the 5-year OS 
demonstrated an area under the curve of 0.78 and 0.75, 
respectively. In our study, five independent validation 
cohorts were used to evaluate the prognostic value of the 
RPI, and we verified the ability of the LRPI to predict the 
benefits of PORT.

This study calculated the LRPI to identify patients who 
could benefit from PORT. The moderate-risk LRPI group 
exhibited a significant improvement in OS. By contrast, 
PORT did not improve OS in the low-risk LRPI groups, 
indicating that administering potentially toxic PORT 
provided no additional benefit for the low-risk groups 
[25, 26]. For patients with high risk, the prognosis is often 
determined by controlling distant metastatic, rather 

than locoregional, disease management. In this context, 
a study revealed that PORT was beneficial for a spe-
cific patient group, characterised by a low risk of distant 
metastasis and high risk of locoregional recurrence [27]. 
This finding aligns with our observations, further under-
scoring the critical role of tailored therapeutic strategies 
in optimising patient outcomes.

In the multivariate analysis, RPI and PLN remained sig-
nificant predictors for OS, whereas pT did not. The RPI 
may embody the characteristics of pT and histological 
information. Previous studies have shown that radiomic 
features can predict pT [28], histology [29], and grade 
[30] in NSCLC. PLN remained a significant variable in 
the multivariate analysis. The radiomic features were 
extracted from the tumour volume; thus, they could not 
represent information from the mediastinal lymph nodes. 
PLN has been reported to correlate with OS [31–33], 
and patients with high PLN have been reported to ben-
efit from PORT [33, 34]. In addition, studies have shown 
that the lymph nodes’ phenotypic information enhances 
the primary tumour’s performance for predicting the 

Fig. 5 Overall survival between PORT and non-PORT in LRPI-based risk subgroups. Patients in the low-risk and high-risk groups did not benefit from 
PORT, while patients in the moderate-risk group did. PORT, postoperative radiotherapy; LRPI, lymph-radiomic prognostic index
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pathological response [35] and progression-free survival 
[36] in NSCLC.

To include the RPI in a clinical model, we developed 
an LRPI that combined the RPI with PLN based on the 
results that PLN and RPIs remained significant predic-
tors of OS in the multivariate analysis. In predicting OS, 
our model outperformed the pT stage and clinical model, 
including the pT and PLN. Previous studies have shown 
that radiomic features can predict pT stage [28], histol-
ogy [29], pathological grade [30], and lymph vesicular 
invasion [37] in NSCLC. The RPI could represent more 
information than the clinicopathological variables; 
thus, it would be much more convenient to use the RPI 
as it can be fully automatically calculated from the CT 
image. In contrast, clinicopathological variables require 

experienced doctors to identify [38]. Additionally, we 
verified the potential of an LRPI to predict the benefits 
of PORT.

We identified a relationship between GLNN and TSR. 
GLNN measures the similarity in intensity values across 
the image, with a lower GLNN value indicating a greater 
homogeneity or uniformity of intensities. CT images 
provide density information of the tumour, which may 
vary along with the TSR. A higher TSR indicated a more 
hostile tumour microenvironment, often associated 
with poorer outcomes [39]. Besides its relationship with 
TSR, GLNN may also reflect intratumor heterogene-
ity. The structural diversity is linked to a varying blood 
supply within the tumour [40], leading to a hypoxic 

Fig. 6 Pathological assessment and transcription analysis, and investigation of the underlying mechanism of the RPI. a Representative pathological slides 
highlighting the distinctive characteristics of tumours with low- and high-RPI values. Tumour regions are marked in red, stromal regions in green, and 
other components in yellow. b The tumour stroma ratio was significantly higher in the high GLNN group. c The Reactome pathways associated with RPI 
involved PI3K/AKT, KEAP1/NFE1L2, and antigen presentation. RPI, radiomic prognostic index; GLNN, Gray Level Non-Uniformity Normalised
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environmessociated with a less effective response to 
radiotherapy in NSCLC [41, 42].

The Reactome pathways associated with RPI involved 
PI3K/AKT, KEAP1/NFE1L2, and antigen presentation. 
The PI3K/AKT and KEAP1/NFE1L2 pathways are associ-
ated with resistance to radiotherapy [43]. The PI3K/AKT 
pathway has been strongly linked to both initiation and 
progression in NSCLC [44, 45]. In contrast, the KEAP1/
NFE2L2 pathway is involved in managing cellular stress 
and can shield cancer cells from the impact of radiation 
therapy [46, 47]. Moreover, KEGG GSEA analysis con-
sistently demonstrated that RPI was related to immune 
system processes, including antigen presentation. The 
prominence of immune system-related functions sug-
gests that cancer cells might escape host immune surveil-
lance, underscoring the potential of immunotherapies. 
With the release of encouraging results from clinical 
trials involving the administration of immunotherapy 
to patients with peri-operative NSCLC [48, 49], a novel 
adjuvant treatment approach has emerged. Immuno-
therapy demonstrates substantial potential to enhance 
long-term survival rates for patients with operable lung 
cancer. Future research should therefore further explore 
these biological processes as potential therapeutic targets 
for preventing NSCLC recurrence.

Our study had several limitations. First, our study fol-
lows a retrospective design, inherently prone to selection 
bias that could not be completely mitigated. Despite the 
utilisation of participants from the PORT-C RCT, it is 
crucial to acknowledge that preoperative CT scans were 
limited to a subset of the overall cohort. Consequently, 
this inclusion constraint may introduce inherent biases 
that warrant consideration when interpreting the study 
results. Second, we restricted the reconstruction kernels 
and slice thicknesses to maintain the reproducibility of 
radiomic features, thereby likely limiting the expansion 
of this model. However, our model showed satisfactory 
performance in the external cohorts, which had a variety 
of scanners, kernels, and slice thicknesses. Last, external 
cohort 4 — comprising patients at varying disease stages 
who underwent definitive radiotherapy — may not pre-
cisely mirror the population composition observed in 
cohort 1. Nevertheless, validation of the RPI — initially 
developed from cohort 1 — was possible within this 
external cohort. This outcome underscores the robust-
ness of the RPI as a stable prognostic variable to OS.

Conclusion
We developed a preoperative CT-based RPI and an LRPI 
capable of predicting OS and benefit of PORT after cura-
tive resection of NSCLC. Additional validation at multi-
ple sites is required to establish the RPI as a non-invasive 
biomarker for patient risk stratification, and as a predic-
tive tool of PORT for NSCLC.
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